Remove ads and gain access to the arcade and premium games!
SubscribeUnlock harder levels by getting an average of 80% or higher.
Earn up to 5 stars for each level
The more questions you answer correctly, the more stars you'll unlock!
Each game has 10 questions.
Green box means correct.
Yellow box means incorrect.
Unlock harder levels by getting an average of 80% or higher.
Earn up to 5 stars for each level
The more questions you answer correctly, the more stars you'll unlock!
Each game has 10 questions.
Green box means correct.
Yellow box means incorrect.
Need some help or instruction on how to do this skill?
Want a paper copy? Print a generated PDF for this skill.
Share MathGames with your students, and track their progress.
See how you scored compared to other students from around the world.
Learn Math Together.
Grade 8 - Number
Standard 8.N.2 - Solve compound interest word problems.
Included Skills:
Expand and demonstrate understanding of percents greater than or equal to 0% (including fractional and decimal percents) concretely, pictorially, and symbolically.
• Recognize, represent, and explain situations, including for self, family, and communities, in which percents greater than 100 or fractional percents are meaningful (e.g., the percent profit made on the sale of fish).
• Represent a fractional percent and/or a percent greater than 100 using grid paper.
• Describe relationships between different types of representation (concrete, pictorial, and symbolic in percent, fractional, and decimal forms) for the same percent (e.g., how do 345 coloured grid squares relate to 345%, or why is 345% the same as 3.45).
• Record the percent, fraction, and decimal forms of a quantity shown by a representation on grid paper.
• Apply understanding of percents to solve problems, including situations involving combined percents or percents of percents (e.g., PST + GST, or 10% discount on a purchase already discounted 30%) and explain the reasoning.
• Explain, using concrete, pictorial, or symbolic representations, why the order of consecutive percents does not impact the final value (e.g., a decrease of 15% followed by an increase of 5% results in the same quantity as an increase of 5% followed by a decrease of 15%).
• Demonstrate, using concrete, pictorial, or symbolic representations, that two consecutive percents applied to a specific situation cannot be added or subtracted to give an overall percent change (e.g., a population increase of 10% followed by a population increase of 15% is not a 25% increase, a decrease of 10% followed by an increase of 10% will result in an overall change).
• Analyze choices and make decisions based upon percents and personal or community concerns and issues (e.g., deciding whether or not to have surgery if given a 75% chance of survival, deciding how much to buy if you can save 25% when two items are purchased, deciding whether or not to hunt for deer when a known percent of deer have chronic wasting disease, deciding about whether or not to use condoms knowing that they are 95% effective as birth control, making decisions about diet knowing that a high percentage of Aboriginal peoples have or will get diabetes).
• Explain the role and significance of percents in different situations (e.g., polls during elections, medical reports, percent down on purchases).
• Pose and solve problems involving percents stated as a percent, fraction, or decimal quantity.
If you notice any problems, please let us know.